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Prediction vs Inference

Prediction

Build a prediction model that has very good, out of sample performance

using all available information and modeling approaches

No explicit attention to “telling a story and coefficients” or
“adjustments”
Possibly, stabilize via “regulation” via Bayes, lasso, . . .

Example: Modeling to support individual patient choice of hospital

Inference

Care is needed in model form and components to ensure that the

inference(s) {slopes(s), effects, . . . } answer the intended question

Respect causal goals
Don’t include variables “on the pathway”

Example: Hospital profiling wherein you don’t include hospital attributes
in a risk adjustment; they are reserved for the hospital effect through
which hospitals are compared
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The Teacher Expectancy Study1

A research synthesis

Yk = the “expectancy effect score” for the k th study

σk = SEk = SE(Yk), the within-study standard error

weeksk = the number of weeks of teacher-student contact before the experiment

bk = the “study effect” (unexplained variation in excess of σk)

b1, . . . , bK ∼ N(0, τ 2)

rk ∼ N(0, σ2
k)

[Yk | bk , α,weeksk , rk ] = µ+ bk + α · weeksk + rk

E [Yk | bk , α,weeksk ] = µ+ bk + α · weeksk

V [Yk | bk , weeksk ] = σ2
k

E [Yk | weeksk ] = µ+ α · weeksk

V [Yk | weeksk ] = τ 2 + σ2
k

1
Raudenbush and Bryk (1985). Empirical Bayes Meta-analysis. J. Educational Statistics 10: 75–98.
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Estimates (via BUGS)

E(µ)
Model E(α) SD P-value τ̂ -2LL

FE 0.060 0.036 0.098 0 70.7

RE 0.080 0.049 0.103 0.120 70.1

RE + weeks 0.088 0.044 0.046 0.086 62.4
α̂ -0.015 0.005 0.003

Including the between-study variation (the RE model) increases the SE of
the estimated intervention effect to accommodate the broader inference
to “studies like these” rather than “these studues”

SD: 0.036 ↑ 0.049

Including the covariate (weeks) reduces unexplained variability

τ̂ 0.120 ↓ 0.086

And, reduces the SD, but not to the FE level

SD: 0.049 ↓ 0.044 > 0.036
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Why include correlation and random effects?

Why include correlation?
To improve efficiency

Only occasionally a worthy payoff and model can be fragile in that
fixed-effects specification can be more demanding than for a working
independence model
For example, a valid longitudinal analysis may require more than a valid
cross-sectional model

Produce a more valid likelihood and so,

Report more “honest” SEs, etc.
Under MAR come closer to “ignorability”

Scientific interest

Prediction!

Why include random effects (heterogeneity, longitudinal, spatial)?
Surrogates for unmeasured or poorly measured covariates

Covariates ↔ Covariance

To broaden the inference space

To induce correlations (see above)

To “personalize” the model

To support stabilization
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Spatial data: Issues and Goals

Tradeoff of geographic resolution and estimation stability

Tradeoff of variance and bias

Use spatial correlation and general covariates to accomplish the tradeoff

Why adjust and stabilize?

There may be region and time-specific adjustment factors

age, gender and race distributions
differential exposures

Observed rates may be very

N T B E
U S A L
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Issues and Goals

In estimating location-specific rates, need to tradeoff off geographic focus
and statistical stability

Another example of the variance/bias tradeoff

Overall vs Local Shrinkage

An independent RE (Bayesian) model shrinks individual estimates to the
fixed-effects model

For spatially aligned data, one may want to shrink towards a
region-specific focus and also shrink towards the fixed-effects model

A spatial correlation structure accomplishes this goal

It can be considered a surrogate for unmeasured
(or poorly measured) spatially aligned covariates
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Spatial Correlation

Specify a correlation/covariance matrix

d = a “distance” metameter
corr(d) = e−γd

Matérn or other flexible options

Use a Conditional Autoregressive (CAR) model

Conditional on all other region-specific parameters, the target
parameter has mean that is a weighted average of the other
parameters and a variance that depends on the weights
The weights depend on distance and some values are illegal in that
there isn’t a joint distribution that would induce the conditional
distribution
Monte Carlo methods are needed to fit the model
Indeed, the Gibbs sampler (Stuart and Don Geman, 1984) was
motived by this kind of problem
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Effect of Spatial Correlation
(a positive correlation decreasing with distance)

Instead of shrinking to the overall mean, shrinkage is to a “local” mean

Then, this local mean is shrunken towards the fixed-effects model

Generally, less than if there had been no local shrinkage

This occurs for all locations and it takes a computer to sort it out

Consequence

A collection of elevated, but unstable estimates in subregions of a region
will remain elevated, due to local borrowing of information

Without spatial correlation each subregion estimate would be shrunken a
great deal towards the overall mean
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A typical spatial model

The data model is Poisson with expectation mkψk for location k

Internal or external standardization is used to estimate the null-hypothesis
expectations mk

The ψk are relative risks with prior distribution

log(ψk) = Xkα+ θk + φk

The θk are independent random effects that produce extra-Poisson
variation

The φk are spatially correlated random effects

Without repeats over time, θ and φ are partially confounded but the
estimates of ψ are still available
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Poisson Spatial Model

η ∼ h(η)

ψ ∼ g(ψ | X, η)

Yk | ψk ∼ Poi(mkψk)

f (yk | ψk) =
1

yk !
(mkψk)yk e−mkψk

log(ψk) = Xkα+ θk + φk

The mk are expecteds (may result from adjusting for some covariates)

The θk are independent region effects and the φk are spatially correlated
region effects

They can be considered “model lack of fit” or “region-specific effects”

Focus is on α and on the adjusted relative risk: ρk = eθk+φk
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Region Effects

Independent

log(ψk) = Xkα+ θk

θ1, . . . , θK iid N(0, τ 2)

The θs shrink towards 0 and the MLE, region-specific estimates are
moved toward the regression surface

Conditional Autoregressive (CAR)

For a set of weights (wkj) depending on the distance between regions k
and j (e.g., 1/0 adjacency)

log(ψk) = Xkα+ φk

φk |φj 6=k ∼ N(φ̄k , τ
2
φk

)

φ̄k =

∑
j 6=k wkjφj∑
j 6=k wkj

τ 2
φk

=
1

λ
∑

j 6=k wkj
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Incidence of Lip Cancer in Scotland2

County-specific information for Scotland’s 56 counties, pooled over the
six years 1970-1980

Yk , the observed lip cancer cases in males
Expected lip cancer cases are computed from the male population
and person-years at risk using internal standardization
Xk = AFFk , the fraction of the male population engaged in
agriculture, fishing and forestry

CAR using adjacency, exchangeable, and combined,

log(ψk) = αAFFk + φk

log(ψk) = αAFFk + θk

log(ψk) = αAFFk + φk + θk

With relative risk, ρk = eφk+θk , deleting either φ or θ for a sub-model

2
Clayton & Kaldor, 1987 Biometrics
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Shrinkage Plots
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Estimates: 2000 samples after 1000 burn-in

Exchangeable model

α0 ∼ N(0, 106), α ∼ N(0, 108)

τ−2 ∼ Gamma, E = 1, V = 1000

Posterior Posterior
Parameter Mean SD

α0 -0.51 0.16
α 6.95 1.33
τ 0.62 *

RR ≈ 2.0 for a 0.1 change in AFF

CAR model

α ∼ N(0, 108)
τ−2 ∼ Gamma; E = 0.25 V = 1000

Posterior Posterior
Parameter Mean SD

α 4.04 1.13
τ 0.63 *

RR ≈ 1.5 for a 0.1 change in AFF
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BUGS Programming

wkj = 1 or 0 according as county j is or is not adjacent to county k

ck = the number of neighbors of region k

Yk ∼ Poisson(mkψk)

log(ψk) ← αAFFk + φk

α ∼ Normal(0, 10−8)

φk | φj 6=k ∼ Normal(φ̄k , preck)

φ̄k ← 1

ck

∑
j∈neighbors(k)

φj

preck ← λck

λ ∼ Gamma(0.25, 1000)

ψml
k ← Yk/mk
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The full predictive distribution
Binomial Example

[Yk | Pk ] ∼ Binomial(nk ,Pk)

P̂k =
Yk

nk

Have P
(ν)
k MCMC draws, ν = 1, . . . ,M.

For each P
(ν)
k generate

Y
(ν)
k ∼ 1

nk
Binomial

(
nk ,P

(ν)
k

)
.

The
(
Y

(ν)
k ,P

(ν)
k

)
, ν = 1, . . . ,M give the joint distribution
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Moments of the Predictive Distribution

The usual “mantras”

Ek = E(Yk) = Y
(•)
k = E{(E(Yk | Pk)} ≈ P

(•)
k

Vk = V (Yk) =
1

M

∑
ν

{
Y

(ν)
k − Y

(•)
k

}2

= E{V (Yk | Pk)}+ V {E(Yk | Pk)}

≈ 1

M

∑
ν

1

nk
P

(ν)
k

(
1− P

(ν)
k

)
+

1

M

∑
ν

{
P

(ν)
k − P

(•)
k

}2

{
Binomial
Variance

}
+

{
Model

Uncertainty

}
SDk = V

1
2
k

If a large number of Y
(ν)
k are generated for each P

(ν)
k

(specifically, Y
(`,ν)
k , ` = 1, . . . , “large”),

then “ ≈ ” can be replaced by “ = ”.
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Residuals
Standardized (Observed - Expected) residual

R∗k =
P̂k − Ek

SDk

These are fine for the Gaussian, but not so good for small P binomial

Better is to find the percentile location of P̂k amongst the
{
Y

(ν)
k

}
Denote it by ζk and for the residual use,

R‡kt = Φ−1(ζk )

If the predictive distribution is exactly Gaussian, these will be identical to the
R∗k and in general are less dependent on the Gaussian assumption

For example, here are comparisons of R∗ and R‡ when n = 25, the direct
estimate is 0 and there is only Binomial uncertainty (no model uncertainty)

R∗ = −
(

nP

1− P

) 1
2

R‡ = Φ−1 {(1− P)n}

P .01 .05 .10 .50

R∗ -0.50 -1.15 -1.67 -5.00
R‡ +0.76 -0.59 -1.46 -5.42
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Integrating mis-aligned information
Exposure assessment at the Fernald, OH superfund site3,4

In the years 1951-1988 the former Feed Materials Production Center
(FMPC) processed uranium for weapons production

The Dosimetry Reconstruction Project sponsored by the CDC, indicated
that during production years the FMPC released radioactive materials

The primary exposure to residents of the surrounding community resulted
from breathing radon decay products

The risk assessment required estimates of the number of individuals at
risk using block-group, age/sex population counts, and exposure as
dictated by wind direction, distance from the plant and building density

3
Mugglin and Carlin (1998). Hierarchical modeling in Geographic Information Systems: population

interpolation over incompatible zones. JABES, 3: 111-130.
4

For a more modern approach, see Bradley, Wikle, Holan(2015b) Spatio-temporal change of support with
application to American Community Survey multi-year period estimates. Stat, 4: 255–270.
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Estimating Health Effects

Need to estimate:

The number of individuals at risk using block-group population counts,
broken down by age and sex

Exposure with the areas of interest dictated by direction and distance
from the plant

The following figures display exposure “windrose,” consisting of 10

concentric circular bands at 1-kilometer radial increments divided into 16

compass sectors

1. Population counts
2. These overlayed on USGS maps
3. These with counts of the number of structures (residential

buildings, office buildings, industrial building complexes,
warehouses, barns, and garages) within each cell

The hatching pattern in indicates the areal density (structures per
square kilometer) in each cell
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1. Population density & wind direction

Population density intersected with census units and wind direction
centered around the exposure source
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2. Population density, USGS map, . . .

Population density intersected with census units and wind direction
centered around the exposure source, overlay on USGS map
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3. Population density, structure density, . . .

Population density intersected, structure density, census units and wind
direction centered around the exposure source
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Integration and Risk Assessment

It is necessary to interpolate subgroup-specific population counts to the
windrose exposure cells

These numbers of persons at risk can then be combined with cell-specific
dose estimates and estimates of the cancer risk per unit dose to obtain
expected numbers of excess cancer cases by cell

The Bayesian formalism is necessary to combine and smooth the
misaligned information, thereby producing a complex posterior distribution
of population counts, exposures, etc. that supports the risk assessment

The approach depends on constructing a Rosetta Stone linking the data
sources and letting Markov Chain Monte-Carlo do the hard work
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